Orchestrating a brighter world

P11-13

Large Language Models as Generalizable Text-to-Table Systems

Steven Coyne¹ ¹Tohoku University Yuyang Dong² ²NEC Corporation

Contact: coyne.steven.charles.q2@dc.tohoku.ac.jp

Summary

- Text-to-Table is the task of summarizing text in table form with no user query.
- Previous studies focused on fine-tuned models that do not generalize well to new datasets.
- We explored the generalizability of prompted LLMs in this task.
- LLMs generalized but did not outperform baseline systems on in-distribution data.
- LLMs wrote tables well but struggled with schema writing and other high-level concerns.

Background

- Task introduced in Wu et al. (2022)
- Input: Sentences or paragraphs of text
- Output: Text-based tables
- Previously studied with fine-tuned models (e.g., BART)

Input Text:

The Wizards launched yet another comeback on Tuesday, this time feasting on the relatively inexperienced Los Angeles Lakers. Washington not only overcame a 13 - point fourth quarter deficit, but won by double digits as well. The team shot over 51 percent from the field on the night and outscored LA 37 - 13 in the fourth. At the crux of the win was All-Star point guard John Wall, who scored 34 points...

Output Tables:										
Team			Player							
Team	Percentage of field goals	Points in 4th quarter	Player	Assists	Field goals attempted	Field goals made	Points	Total rebounds	Steals	
Lakers	51	13	John Wall	14	25	14	34		4	
Wizards		37	D'Angelo Russel	9	21	10	28	6		
			Jordan Clarkson		19	10	22			

Example from the RotoWire dataset, adapted from Wu et al. (2022)

-Challenges

Generalizability:

 Fine-tuned models struggle to generalize to other data

Reasoning:

- Entity Linking
- Contextual Understanding
- Number of tables to make
- Design of columns & rows

Evaluation:

- Open-ended task
- Reference-based metrics
- What about alternatives?

Training Dataset ↓	E2E Scores	WikiTableText Scores	WikiBio Scores	RotoWire Scores
E2E	98.56	12.66	5.22	0
WikiTableText	42.47	80.44	25.02	0
WikiBio	24.89	33.34	74.79	0
Rotowire	0	0	0	91.5

Average Non-header cell BERTScore F1 results of models trained following Wu et al. (2022)

Generation Approaches

Three Subtasks:

Group Generation:

- Entities are listed and sorted into groups
- Output: List of groups

Schema Generation:

- Columns are defined and schemas written
- Output: One JSON schema per planned table

Table Generation :

Results

- Tables generated based on schema(s) and text
- Output: Tables written in tabular JSON

Prompt Settings:

-Conclusions

- The LLMs show moderate performance on all datasets
- "Gold Schema" scores are high; some exceed baseline
- The fine-tuned baselines outperform the LLMs in other settings
- The grouping step degrades performance except for fewshot RotoWire

Baseline	Header	99.88	91.98	93.13	93.14
(Wu et al. 2022)	Non-header	98.56	74.63	78.18	92.97
Gold Schema + Text	Header	100	99.63	99.93	99.86
(Zero-shot)	Non-header	69.56	66.25	72.29	93.76
Gold Schema + Text	Header	100	99.71	99.94	100
(5-shot)	Non-header	88.45	77.49	78.99	97.23
Schema + Text	Header	77.46	58.38	69.66	55.10
(Zero-shot)	Non-header	41.87	28.57	42.51	44.19
Schema + Text	Header	98.89	82.42	90.28	83.65
(5-shot)	Non-header	86.27	50.07	65.11	84.94
Group + Schema + Text	Header	74.00	58.98	75.14	39.75
(Zero-shot)	Non-header	30.86	26.70	32.78	28.05
Group + Schema + Text	Header	98.52	82.72	90.02	84.03
(5-shot)	Non-header	85.43	48.16	64.20	85.38

E2E

| WikiTableText | WikiBio | RotoWire

Cell Type

Approach

Comparison of baseline and various prompt settings using gpt-3.5-turbo-1106. All results are BERTScore F1 scores.

- The LLMs showed generalizable performance in this task.
- For a specific domain, they typically performed worse than in-domain fine-tuned baselines.
- They **performed well on table writing** when given a schema.
- This suggests the challenge lies in identifying schemas appropriate for the domain.
- **Reference-free metrics** would help this task greatly.

ANLP 2024 Poster Session